PITCAIRN IFNANCAL B NNMGEMENT GROUP

September 15, 1989

Mr. David Ruder, Chairman
Securities and Exchange Commission
450 5th Street N. W. Washington, DC 20549

CHAIRMAN'S OFFICE
RECEIVED
SEP 181989 36552
SEC. \& EXCH. COMM.

Dear Mr. Ruder:
I enjoyed your speech in Chicago on September 12 at The Northern Trust Conference.

Please find enclosed a paper articulating some of the systemic problems that have evolved within the capital markets. The current situation you had described is a function of the separation of ownership and control. I have been researching this problem for years and believe that we have to restrict the activities of money czars who impact the markets in non-economic fashion, and gamble with huge amounts of capital without regard to the underlying corporation, or the needs of the beneficial owners.

To use your example of capital market technology as the super highway, I would contend that the drivers of the automobiles do not own them, and therefore are not concerned with the consequences of their actions. Never before has so much capital been tossed around so mechanistically. This is a function of the passage of ERISA creating the situation where institutional money managers are rewarded in the near term for a transactions orientation. This transactions orientation has lead to increased expenditures on technology to increase transactions. This technology, the super highway, exceeds the ability of decision-makers to thoughtfully process it. The reaction is delegation to machines and mechanistic approaches. We must realign the interests of the owners and those in control.

Mr. David Ruder
Page 2
September 15, 1989

I have enclosed a copy of my paper on Ownership and Control. It is an internal document for the billionaire family that employs me.

D. Mark Cunningham

Vice President
/lck
Enclosure

OWNERSHIP AND CONTROL

The ownership of most large corporations today is represented by publicly traded corporate stock. Individual investors control some of these shares. Individuai investors do not, however, hold most of the corporate shares. With the passage of the Employee Retirement Income Security Act in 1974
(E.R.I.S.A.), institutionally invested assets have grown dramatically. Today, institutional investors own most of the corporate stock in America and account for about 82% of the trading volume. Such investors are often viewed as abstractions: bank trust departments, insurance companies, mutual and pension funds. In reality, they are the individuals who manage these investments for their respective institutions.

Although an owner-entrepreneurial or an individual stockholder may have a considerable personal commitment to the welfare of a particular corporation, this is not the case with the institutional funds managers who dominate corporate stock trading today. They are dependent upon the overall performance and appearance of their invescment portfolio, not on the respective fortunes of any individual company shares in their portfolio. The higher salaries, bonuses and career advancement of these institutional investors is dependent upon their regarding corporate stock in general as merely one commodity vehicle among many that can provide a return stream for the burgeoning assets of their clients. From this perspective, corporations with hundreds of thousands of employees are no different than purely Einancial instruments as Treasury bilis, gold futures and Swiss francs.

Such institutional investors, unlike the neo-classic owner-entrepreneur, are passive, not active in the management of the corporation whose shares they hold. The only initiatives they can take are to buy more stock, if they like management's progress or to sell if they do not.

As those institutional investors do not own their assets but represent legal owners (trust beneficiaries, pension beneficiaries) who have even less involvement with the underlying companies and who are competed for by other institutional investors, the performance of their portfolios is evaluated in the short term usually from quarter to quarter. In this enviromment, it is not the manager's investable assets but their salaries that are at stake. If they are successful they are highly paid, if not, they are replaced. As a result, considerable pressure falls on them to keep step with the rest of the wall Street herd. The
stronger the herd instinct, the less individual risk of loss of career.

To offset these considerable risks, institutional fund mariagers have developed a number of defensive Eactics all of which involve shifting the attention $c f$ the beneficial owners from the resultant returns of investment decisions to transactions and processes which are ostensibly believed to increase return or reduce risk.

First, they assemble index funds that mechanically mimic the performance of the overall market. Market averages usually outperform most managers. Consequently index funds tend to do better than most conventional managers. This is because cor.ventional managers can and do pick the wrong stock and incur high trading costs, paying for investment research and tecinnology. Also, many fund managers switch out of out-of-favor stocks toward the end of a reporting period, a practice known as "window dressing".

Second, some funds hedge their holdings with pits, calls and futures, a way of minimizing volatility in the face of dramatic swings in the market. This gives them effective control over large amounts of assets over a period of time at a very low cost.

Third, some quantitative managers delegate to computers the decision-making process of when and what to buy with large blccks of stock. These program trades do not depend upon the fundamentai performance or health of the underiying company at all. Instead, the computers relentlessly scour the tapes for exploitable gaps between current prices of stock index futures and the shares of the companies that comprise the indices.

The aim of all three tactics is to transfer the attention of the beneficial owner away from the returns to processing activity that can serve as an alibi, if necessary. Due to their focus on processing activity "models" and "tools" and "organizational discipline", which are all looking at pretty much the same things, these professional fund managers think more like speculators than investors. Additionally, because these professional fund managers have a fiduciary role to their trust and pension beneficiaries, they are often forced into accepting any advantageous mariet offer for the shares they are holding. Consequently, institutional investors are more likely to settle for short-term gains at the expense of long-term growth.

The surge in institutionally managed assets, their non-taxable nature, the competitive environment for more
assets, the fact that the institutional investor does not own the assets (is salary oriented as opposed to return oriented), the fiduciary liabiiities and the focus on processing aceivity lead, in the aggregate, to a situation where institutional managed funds will ride with a currently favored company or industry, according to currently fashionable analysis, and then deftly leap to another purported growth opportunity at the first sign of trouble. A childish game of "chicken" is played as each competes to cat.ch the peak market price before selling what all agree is a well managed company with good economic prospects. As a result, a healthy corporation has seen its stock fall, with all the entailing impact to its financials when short-term growth measures such as earnings estimates did not come through. This can be especially dramatic when a company's price earnings multiple is flying high based upon a good story and previous history of rapid growth.

One piece of bad news, however insignificant, and the ha:r-trigger fund managers stampede. Hundreds of million of dollars of market vaiue disappear as the stock plummets low enough to attract new buyers. An announcement of Digital Equipment Corporation in 1983 that its first quarter earnings would be "substantially below" Wall Street expectations, caused a drop in IBM by three points, a loss in market value of $\$ 1.8$ billion, even though IBM had recentiy posted profit gains.

Further adding to the chaos are the arbitrageurs. Arbitrageurs have even shorter fuses than fund managers. They are not interested in the underlying company at all, but in small changes in the market value of its stock. Some of them harvest spreads for a few percentage points, the difference between the valuation of a stock and its options or between the price of a stock in one marker and its price in another. Some live off differences between the price of the stock and the offer tendered by interested parties who want to take over the company. Still others exploit value differentials between the price of shares in the Eakeover candidate and in the company that is taking it over.

Arbitrageurs are a relatively new factor in the markets, having in a decade exploded in number from two dozen to 300 participants. They do not care about any company or its wealth building capability. They are pure speculators who might profit whether a firm is prospering, failing or standing still. They cycle huge amounts of money from one investment vehicle to another, figuring that a point here and a point there will add up to a good return over the course of a year.

To understand how the equity markets have come to such a state of separation of ownership and control, one has $=0$ consider the emplovers of these institutional investors - the pension plan sponsors, and the employers of the corporate pension plan sponsor - the corporate CEO, or more precisely, the executive committee. The Federal Dension Reform Act of 1974 requires that corporations contribute enough money to honor their pension commitments. A cirect result was a massive in-house increase in the fiow of money to manage persion funds, placing fund managers under more pressure to perform. Some estimates have indicated that a one percent improvement in the performance of corporate pension funds will result in a reduction of about 25 \% in the mandatory anrual corporate contributions. Since pension fund contributions have been projected to be as large as 25\% of corporate pretax profits, the urge to fund money managers who wil: provide above average performance is strong indeed.

Given such high stakes, many corporate CEO's view pension funds as independent profit centers and expect their managers to outperform the market and other money managers consistently. Because corporations divide their operations neatly into quarterly and yearly periods, money managers are expected to turn in above-average performances smoothly and on schedule. Good results should be almost as systematic as the flow of widgets down an assembly line. Consequently, those pension plan sponsors who perform are rewarded with six figure incomes; those that do not are replaced. Scrambling for higher returns on their investments, fund managers have channeled huge amoun=s of pension money into common stocks. Pension assets which should be prudent, long-term investments have been sunk into short-term and increasingly speculative vehicies.

Consequently pension plans through both secondary and tertiary financial instruments, such as index funds, have come to be the major holders of American corporate stocks; and corporate employees have in the aggregate become the predominant beneficiai owners of American corporations leading to pension fund socialism. This ownership is so divorced from control that these individuals have not the least bit of effective control over any of the corporations of which they are part owners. Yet, all the workers share in the fortunes of corporate performance for better or worse; those who have control of the assets are not owners and those who own the assets have no control. Their respective motivations are not the same.

The pressure on near-term performance, at the expense of long-term wealth building, causes many financial officers through their pension fund consultants to monitor in minute
detail the performance of the professional investors they have hired (as well as those of promising replacements). Usually detaiied review of the account takes place every th:ree months througin the exhaustive and exotic quantitative assistance of the manager's consultant. the institurional investor who moves out of step, resulting in returns below pa:: for even a relatively short term, is under increasing pressure to perform. the "twelve/twenty-four rule" as it is called, is followed by not so few corporations. The manager who is 12% below the Standard \& Poor's 500 for twenty-four months is replaced. In short, money managers have increasingly found themselves in an impossible position of demanding results far too quickly with an inevitable reliance on playing the popular trencs.

A Einal source of pressure on the pension fund manager is the requirement of the Employer Retirement Income Security Act of 1974, which mandates that pension funds be "prudent", and tethers the executive committee of the corporation with a no:i-delegable liability. Not to be prudent can result in litigation against the money manager. Presently, the definition of what is prudent is extremely tenuous, which results in advisors acting as a herd. Those who take a unique stand that proves to be wrong may be staring at bankruptcy.

A final pressure towards consensus is the executive committee of the corporation. Although pension fund officers are responsible to their board of directors, they may be far more sophisticated in investment understanding than its members. The pension plan sponsor either says what the board wants to hear or they will be replaced.

These various pressures on near-term performance at the expense of iong-term wealth building, combined with absentee-ownership of the assets, lead to an increasing interest in the ultimate speculative venture, market timing. Market timing is seductive. Over a ten year period, catching the major surges in the equity markets will triple the results of simply buying and holding the Standard \& Poor's 500. Furthermore, market timing can be counted upon to deliver the activity upon which a hungry and transactions-based financial services industry feeds. Unfortunately again, the interests of the beneficial owners and those who invest the assets for them are again ai odds. While market timing is clearly good for the professional investment community, providing fees through transactions, technical analysis, and consulting services, as well as alibis for poor performance, and providing continuous opportunities to succeed in the future, it has not been proven to benefit the beneficial owners who receive the
ensuing return stream.
William Sharpe, a Stanford University finance professor and weli-published academician, determined that a money manager who wishes to market-time profitably must be right three out of four times after commissions and advisory costs. Yet another major study by Merrill Lynch concluded that the great majority of funds lose money as a result of their timing efforts, and when the effects of commission costs are ir.cluded, no one succeeds.

Ac:ademic scrutiny has proved to be equally unsparing of the fundamental practitioner's abilities as it has of the technician's. It has been determined that if the degree of risk remains unchanged, there is no correlation between a fund's performance in one period and its performance in another. This analysis dispels the myth of the hot money manager. Funds in the top 10% in one period might be in the bottom 10% of the next or vice versa.

Nor has any link been found between portfolio turnover and subsequent performance. Rapid turnover does not improve results. Also, if the risk factor is held constant, there is little difference in the results of funds of various sizes.

A survey of 571 of the largest pension and profit sharing funds in the country managed primarily by banks and insurance companies for the three, five, and ten and fifteen year periods ended in 1978, indicated that only 22\% did as well as the market. Another study covered $2: 4$ pooled equity funds, large banks, and insurance companies that managed over $\$ 100$ billion. The measurement was for one, three, five and ten year periods ending December 31, 1980. In every hoiding period, they examined banks pooled funds performance for 1962-1975 and found that 87\% underperformed the Standard \& Poor's 500. A Becker study through the end of 1981 found that the median of 3,500 of the largest profit sharing endowment and other tax-exempt funds with stockholdings totaling over $\$ 125$ billion did 20% worse than the Standard $\&$ Poor's 500 for the last fifteen years, and did 30% worse in the last decade. The unequivocal conclusion is second guessing corporate management is not rewarded. Consequently, the solution has to lie in working with management to closely aiign the interests of ownership and control.

In theory, management's interests are the same as those of the stockholders for whom they work. In times past, that theory made more sense than it generally does today. For example, during the 1890's, John Pitcairn served as Chairman cf the Pittsburgh Plate Glass Company and also owned 50% of the capital stock. This focused his priorities clearly on
weaith-building. His performance as a manager was perfectly aligned with his interests as owner/entrepreneur. Annual returns on investment were superior, and today his family controls assets exceeding $\$ 1$ billion due to his success as a long-term wealth-builder.

However, the conceptualization of the modern business corporation was still evolving during the time of John Pitcairn. During the ensuing one hundred odd years, organizational structures have evolved from the few lavers of management necessary for coping with the complexities of operating a nineteenth century glass company to the modern vertically integrated multinational corporation that is PPG Industries. The management team is largely a post World War II phenomenon, although it had been developing throughout the early decades of the twentieth century. The evolution of the professional management team created an organized cadre that had different motivations from the beneficial owners. As long as the owners were organized and ownership was concentrated this did not present much of a problem. However, The Securities Act of 1933 and The Securities Exchange Act of 1934, by increasing information dissemination to the irivesting public, mandated that executives should increase the numbers of public investors instead of maintaining their allegiance to the original entrepreneurs. Such actions legitimized the separation of ownership and control. By the early 1960's, individuals or families held the majority of stock in only five of the two hundred largest non-financial corporations in the nation, and a full 169 of these 200 companies were controlled by professional managers. As ownership of corporations became progressively more dispersed and diffused among thousands cf passive stockholders, professional managers gradually assumed effective controi.

These managers, like the institutional fund manager, have as p:=imary rewards salaries, bonuses and career advancements within the company or the greater industry.

The CEO's legal responsibility is to serve the interests of the stockholders. The problem begins with the recognition that stockholders can have adverse interests and differing time horizons. Some own the stock for short-term returns, whether in the form of dividends or appreciation of the market value of the shares. Yet, these two forms of short-term return often require opposing business strategies. Long-term wealth-building requires investments in modernized production facilities, market development, new technologies or basic research; the money for which may have to come at the expense of short-term returns. Should ambitious long-term programs result in an undervalued share price, the company may become vulnerable as a takeover target. Once a
raider puts the company in play, senior management jobs are at risk.

In the face of such conflicting interests among the "owners", and often no interese ar all by the trust and pension beneficiaries, who ultimately own the assets, management can become elites accountable only to themselves. If the executives' ultimate ambitions iie outside the corporation, then a spectacular short-term gain in sales or market share may be the strategy, especially if the financial press takes no:ice. Senior management seeks growth in whatever form suits their own purposes, and there can be trade-offs between corporate strategy and career strategy. When push comes to shove, as often is wiEnessed in hostile tenders, management tends to protect their own jobs rather than make personal sa=rifices on behalf of ownership interests.

In theory, the board of directors should check management in their pursuit of self-interests. Yet, primarily because of the vagaries of the proxy process for shareholder voting, most directors are more closely affiliated with incumbent management than with the owners. Many are outside directors, others have significant ties to the enterprise other than ownership, and in most instances directors are more beholden to incumbent management than to the shareholders for their seat on the board. Consequently, while the board of directors may assist management in running the company, it is seldom an independent voice for shareholders.

The pressure on corporate management to keep the stock price up in the near term cuts off many long term wealth building opportunities. Because managements' personal interest are nct aligned with those of the owners who are themselves ranging from disloyal to disinterested, and diverse in time hcrizon, pressure is placed upon shore term performance to avoid a hostile takeover attempt. In the face of this near-term pressure often the only short-term solution to a problem is purely financial. Corporate management follows the paradigm of the institutional investor and acts as portfolio managers. The crux of the problem with the portfolio manager approach to corporate finance is the professional corporate managers who direct the affairs of absentee-owned companies tend to see their role and purpose to be "managing assets" rather than building profitable companies that increase their market share over time. Because of this orientation they focus their attention and energies on making short-term gains by managing their collection of companies as if they were a stock portfolio. They use debt to spur company growth through mergers and acquisitions and they improve corporate performance in the short run by stock buybacks and the restructuring of assets.

For such managers the financial transaction inas become the mechanism for achieving professional success rather than technical knowledge of their industry. This type of manager is characterized by sophisticated Einancial and admininstrative skills, and a focus on getting cuick results and immediate rewards. It is this combination that can prove sc crippling to the long-term success of a company and its irdustry.

The epitome of the corporace manager/portfolio manager is the management of a conglomerate. New companies are acquired predominantly as investment and the financial return supplied by an acquired company is its only measure of value and success. Management strategies are variations on manipulations of assets. The objective is not to gain market share and build wealth but to manipulate assets to maximize their present value.
Mi.chael Porter found in a study of diversification strategies at: 33 major firms during the years between 1950 and 1986 that some 74 percent of all acquistions made by these companies into unrelated industries were subsequently divested or ciosed down. In related fields the failure rate was still 50\%.

In summary the current ownership structure of the corporation leads to a tug-of-war between various factions competing with conflicting personal motivations to extract as much personal wealtin in the form of salaries, bonuses, career advancement, management fees, transations charges and consulting fees from the legal owners of the corporation. This has happened because the beneficial owners are cisorganized and corporate management and institutional investors are not. As ownership and control are further separated, the competing factions, the various owners and corporate management, are forced into a near-term focus on results which favors financial solutions $a t$ the expense of long-term growth. The pressure of s.astantial institutional shareholders upon management, like tine pressure of venture capitalists on a new firm, forces managers and boards of directors to rivet their attention to short-run profits and the company's share prices.

Ownership and control when tightly linked with regard to interests boosts long-term returns, and permits the management more flexibility with regard to wealth buiiding.

The most obvious meinod of reconstructing ownership and control in a large loosely held corporation is the leveraged buy-out. In a leveraged buy-out, a group of investors borrow the money, often by issuing high-interest weakly collateralized junk bonds, to purchase a company's
outstanding stock and thus, bring it once again under the control of the owner-entrepeneur. The business has a more fozused set of objectives than one owned by thousands of passive pension and Erusc beneficiaries. While ibo's occur when management fails to run the business in the interests of the owners and the market value of a company falls below its miximum attainable value, LBO's incur so much debt that they often must liquidate assets to service the debt and while the owners are significantly enriched in the near-term often the corporation has entirely mortgaged its future for the present.

Buying a minority investment in a company differs fundamentally from buying control. With a minority interest the investor is a passive observer who only shares in what management decided to share with them. With control they are able to restructure the corporation. The two situations are so different that the shares are actually evacuated in two distinct markets. The secondary market trades claims on future dividends and price/earnings multiplies. The primary market of the corporate raiders trades control, and sells at a significent premium - the control premium. Because shares trading in the two markets are really different assets, they naturally sell at different prices. The minority investor receives the present value of cash flows to equity given current control. The raider has calculated a maximum premium over the minority share value that they will pay to gain control. It is also the expected increase in shareholder vailue created by the change in control. If a corporate raider pays fair market value of the minority shareholder for the target company all the increased value will be reaiized by all existing shareholders. At any lower price the remaining vaiue goes in the raiders pocket.

This remaining value is derived from their sources; 1) tax shields, 2) incentive effects; and 3) controlling free cash flow. Tax shields consist of the interest expense and interest depreciation from debt financing. Incentive effects consist of increasing management's ownership of the company. Gaining control of free cash flow enables maximizing free cash flow in the interest of the owners and thereby increasing shareholder value. To the extent shareholders succeed in forcing management to increase value, the economy's resources are allocated more efficiently. In the restructuring following the LBO, management has probabiy invested much of their own resources in equity of the restructured company. Consequently management's own well-being is tied closely to that of the business. Moreover the huge debt service burden that restructuring frequently creates, forces management to generate healthy cash flows or face bankruptcy.

Many hostile Lakeovers occur in mature or deciining industries where there are low numbers of investment opportunities, and business often have large free cash ミlow. Industry decline creates real concern on tine part of executives regarding the survival of their organization. Although the proper strategy from a business perspective may be to shrink or liquidate the business, management may refuse to do so. Out of a commitment to the business, the employees, the community and their own personal welfare, management may continue to reinvest in the business despite poor returns. The objective of the hostile takeover is to w:est control of free cash flow from current management and put it in the hands of the rigitful owners.
$I \equiv$ management wishes to avoid a corporate raider, there are two strategies. First look at the company as both a business and an investment. Management should work to increase free cash flow and avoid uses of free cash flow that reduce firm value. They should take wealth-building seriousiy. Second, management should work to ensure that their board of directors really represent the owners' interest. These strategies will reduce the disparities between ownership and control.

Separation of ownership and control in a corporation hinders long $\tau e r m$ performance pressure on all involved, leading to financial solutions to all business problems and a view by corporate management that they are managing assets. Managements autonomous position and loose relationship with the diverse owners lead them into conflicts between corporate and personal career strategy which are manifest in a tigg-of-war over the wealth streams that is generated from the corporation, and which can be diverted to dividends, retain earnings or bonuses for management. When ownersip and controi become too disparate and cash flow is diverted from the owners the corporation struggles inefficiently, marker price suffers, and like a thrashing swimmer attracting sharks, the corporate raiders redress this inefficiency in dramatic fashion.

The key to longterm wealth buiiding is to avoid such inefficiencies. The Pitcairn Family Office has looked to history to determine this optinal long term strategy for wealthbuilding in conducting this research we have had the opportunity of interviewing and sharing information with thirty-six other families in this country who have had similar experiences to the Pitcairn family with PPG Industries. These families have been quite successful and have in the aggregate amassed weath exceeding $\$ 29$ billion. Interviewing these families we determined that they had built
their wealth in many different industries. They did have however, certain common experiences. First they had not amassed the wealth over a short period of time. As a group they had accummulated the wealth over long periods of time, mere than 20 years on average, and had during that time erjoyed superior rates of return, returns that would have been in the top quartile annually of institutional investors. None of the families had amassed the wealth as consumers of institutional investors although two of them were in financial services and had amassed the wealth by managing other peoples' money for them.

Tc determine the plausibility of any family amassing such wealth as a consumer of return streams from institutional ir.vestors we examined the return streams of 1,120 irstitutional investment managers over an 8 year period, to reach beyond the typical 5-7 year equity market cycle.

Analysis of 1,120 Institutional Investment Managers

Time Period	Incidence of Success (Top Quantile)	Stock Funds	Bond Funds	Balanced Funds
8 years	8 successes	0.28	0.08	0.2%
8 years	≥ 6 successes	1.8\%	0.0%	1.4\%
8 years	≥ 4 successes	14.78	11.98	13.0%
8 years	>2 successes	50.38	52.38	51.0\%
8 years	≥ 0 successes	100.0\%	100.0\%	100.0%

We then questioned what the results would look like should the odds of being ir the top quartile be purely a matter of Iuck i.e. statistically independent. To do this we used the binomial probability formula which for 8 consecutive successes with a 25 s chance of being in the top quantile would be:

$$
\frac{8!}{8!0!}(0.25)^{8}(0.75)^{0} \text { or } 0.00002 \text { or } 0.0 \%
$$

Continuing this analysis the results were:
Pure Luck
Incidence of
Success

Time Period
Observed
8 years
8 years
8 years
8 years
8 years

8	successes
≥ 6	successes
≥ 4	successes
≥ 2	successes
≥ 0	successes

These "pure luck" results were close enougn to the observed results that we derived the implied probability of the observed results through the binomial formula.

Analysis of 1,120 Institutional INvestment Managers

Time Period Observed	Incidence of Success (Top Quartile)	Stock Funds	Bond Funds	Balanced Funds
8 years	8 successes	45\%	25\%	45\%
8 years	6 successes	32\%	25\%	31\%
8 years	4 successes	278	25\%	26\%
8 years	2 successes	20\%	21\%	21\%
8 years	0 successes	25\%	25\%	25\%

The results in all cases but particularly in the bond fund, were close enough to 25% as to indicate asset returns are independent. The influence of the equity component of the balanced funds is striking due to the apparent randoness of fixed income returns.

Given these results the odds of selecting an institutional investor that would deliver consecutive top growth results over an 8 year period is about 2 in 1,000 or put another way, the likelihood of failing to select one is 99.8\%. However, the 36 families examined had actually enjoyed the equivalent of top quartile returns for more than a 20 year period at some point. It is important to point out that one could have an 8 year cumulative return equivaient to having been in the top quantije for 8 consecutive vears Eirough many permutations beyond this analysis. This analysis does not arque that there are no superior equity managers it simply argues that in fact annual returns of institutional investment managers in the aggregate are independent a contention supported by many other research studies and which has caused the creation of the manager consultant industry.

Since the aggregate institutional investment returns are independent then we can examine the likelihood of consuming institutional investor returns and matcining the long term performance of the thirty-six high net worth families examined.

It is obvious that the likelihood of duplicating their performance as consumers of institutional investors is extremely remote.

All of the families had in fact built their wealth through the corporate structure, which regardless of industry had in
place a management Eeam that had enjoyed much success as an economic engine.

Belijeving that a tight linkage between ownership and control is desireable, we examined the results of companies where a family owned significant blocks of the outstanding equity.

An analysis of 2000 companies vieided approximately 300 companies where famalies held more than 10 of the out:standing equity. Specifically the percentage ownership ranged from $10 \frac{5}{5}$ to 54\%. This aggregation equal-weighted was labeled the Family Universe. When compared to the $S \& P_{500}$ over the years 1985 througint 1988 , it significantly outperformed the $S \& P_{500}$.

CUMULATIVE RETURNS: S\&P 500, FAMILY UNIVERSE

LINEAR REGRESSION: S\&P 500, FAMILY UNIVERSE

NORMAL DISTRIBUTIONS

Furcher analysis then locked at these same companies over the 20 year period 1968 - 1988 .

The results demonstrate subs=antial outperformance of the S\&P 500 over time and in aimost every year.

fAMILY UNIVERSE

AMNUAL

FAILY LINERSE RENUAL

 3.924767 12.04560 15.33921 19.31767 11.29801 21.59964 23.48991 21. 10972 23.01966 23.14591 22.48762 22.15291 20.1186520 .3958424 .1482320 .3241425 .0026626 .68852 23.44981 23.3720425 .2244521 .2401224 .40945 20.4432126 .1609420 .38013 26.22815 28.0251023 .9967426 .1200425 .8166624 .1391924 .13646
32.0952120 .29365 28.19980 29.9181424 .1096427 .0801526 .6513129 .2810 J 25.3281
9.548409 26. 29535 29.28080 22.97868 26.11212 25.76606 24.33669 24.50152
$5.61458721 .5011212 .3468120 .1531021 .7285)$
38.6918931 .6311926 .2391626 .10665
24.0199520 .0051221 .07143
16.0952720 .0069
25.10988

CUMULATIVE RETURNS: S\&P 500, FAMILY UNIVERSE

Further analysis indicates concentration of shares in a family's hands, the union of control and ownership ieads to 1) a strong sense of mission; 2) weil-defined long term goais; 3) a capacity for self-analysis; 4) the ability to bring out the best in empioyees including management, 5) the foresight to anticipate and adapt to major changes without losing momentum, 5) a lessening of buracracy and 7) a lessening of management politics.

Our research indicates that family ownership boosts motivation only where certain conditions are evident; 1) there are tangible financial rewards for employees resulting from ownership; 2) there is ongoing communication between management and the family and with clear management accountability; 3) there is effective planning and structure.

Still other factors must be avoided which are unique to family controlled businesses. Family businesses' strength can also be their Achilles heel. Such businesses sometimes come apart because of disagreement between family members that may have nothing to do with the business.

A pathological problem to avoid in family controlled companies is the founder' trap syndrome in which the founder excessiveiy dominates the organization and the organization's sciccess is aimost exclusively dependent upon the founder's availability. The founder is the biggest asset and liability the company has. Erequently when this person exits, the company dies or the family that owns it loses controi ertirely. This usually happens within three generations. The trap is that the company cannot extract itself, by itseif, from this predicament.

Still if these challenges are overcome the most consistently successfui of all enterprises seem to be those that are family managed. The executives have a commitment that is lerger than that of the business, it is to the other members of the family both present and future.

Every decision is based on what is best for the family. As a result it becomes possbile to transcend areas of ecomonic activity and move into those areas which hold more potential. The Family and their employees are more important than the product or service to that company. The company does not become trapped in one field or endeavor. Our research indicates that becoming consistently successful seems to combine the concern for long-range success that is found in family organizations wtin the efficency of the professionally managed corporation.

Other key criteria that distinguish the better Family
controlled companies for investment purposes:

1. They deveiop a strategic focus
2. Pay close attention to management transistion
3. Carefully select and socialize their employees
4. Emphasize long-term rewards
5. Create an effective organizational design
6. Grow where the business is, do not try to make a market where none exists.
7. Do not assume a good manager can run anything (Portfolio manager approach)
8. Do not load the producing personnel down with administrative functions (Function over form.)
9. Know that debt is not their friend.
10. Keep close to their customers
a. management knows the customers personally
b. the relationship with the customer determines success
c. the family does not let the internal customers (management) take precedence over those with the real money
d. any advertising should build confidence in the company first and the produce second (the long-term view)
e. believe that creasing a customer is the ultimate purpose of a business
i by creating utility
ii by pricing
iii by adaption to the customer's social and economic needs.
iv by delivering what represent true value to the customer
11. Emphasize iong-term planning
a. constantly moniter their market for trends and discontinuity
b. keep track of the competition
c. are alert to shifts in law and public poiicy
d. know their organizational strengths and weaknesses and capabilities
e. are aware of the economic situation.
12. Hold differing assumptions about:
a. the economic environment - success comes from adding value to the customer as apposed to througn financial dealings
b. human nature - high trust as opposed to distrusting
c. time - future oriented - while honoring the past as opposed to near term oriented
d. humans are not a means to an end and should be developed
e. relationships - eqalitarian and group oriented as opposed to individualistic.

Reviewing annual reports, proxis and $10-\mathrm{Ks}$ and interviewing respective management teams for these characteristics as well as their firm handle on valuing companies from a corporate finance perspective as opposed to investment perpective, (Return on Equity Profit Margin, Return on Assets, Assec Turnover, Inventory Turnover, Collection Period, Days Sales in Cash, Payables Period, Ficed Asset Turnover, Financial Ieverage, Debt-to-Assets RAtion, Debt-to-Equity Ratio, Times In=erest Earned, Times Broken Covered, Current Ratio, Acid test, Return on Invested Capital, as opposed to Price/Earnings Ratio, Earnings Yield.

Relative Momentum) has yielded a group of good family controlled public companies with the following results:

CUMULATIVE RETURNS: S\&P 500, FAMILY UNIVERSE, FAMILY SELECTIONS

LINEAR REGRESSION: S\&P 500, FAMILY UNIVERSE, FAMILY SELECTIONS

NORMAL DISTRIBUTIONS

CONFIDENCE INTERVALS

FAMIL Selections amual

-14.259114 .0618018 .3236112 .0952511 .34048 11.21135 13.6873513 .5500911 .8639218 .6568317 .8840020 .1325721 .2505121 .6141122 .07661

6.31488. .66757615 .1453114 .9832922 .6918723 .2432421 .3251024 .3337625 .5560525 .6442725 .92253

12.13532 35.721710 31.11352 25.60134 24.72219 30.1125030 .09356 29.12351 39.0523141 .59554 30. 32826 34. 14162 34. 11005 33.29521 32.63165
26.0371117 .9144327 .1192229 .2304929 .6671120 .67164 10.4212121 .66358 30.31271 27.33380 29.21469
[17.540J3 11.56051 H. 32917 31. 39120 35.1170331 .0258830 .25922 26.4409921 .58491 1969 4.0578093 .2610702 .7849000 .1501550 .0209953 .1705967 .4020426 .9941966 .719393 7.56J541 8.3950789 .4690299 .679999 2.604907 2.253904-0.55862-0.87123 3.011180 7.9027167 .3164371 .0194827 .9245658 .8010779 .92683710 .11962
$1.841920-2.42151-2.307693 .1222739 .196055$ 0.351285 7.7835418 .7442789 .65480910 .0353210 .96525
$-6.95914-4.658643 .57886511 .25096$ 9.812427 1.8755239 .85325810 .1582111 .9582111 .99213

$17.51046 \quad 26.8758119 .3926815 .4029015 .6443815 .9210216 .6886716 .14380$ $38.71181 \quad 20.3834214 .5066215 .0023915 .4718015 .1779115 .87135$ 3.9029494 .3184167 .95410910 .2506412 .5304312 .19196
$4.6611309 .95598312 .36620 \quad 14.6492514 .18111$
16.5929711 .0074418 .5083016 .91662
11. 5512419.2861316 .97458
21.0107216 .7866

 $13.274069 .7095466 .7989637 .1524676 .1263553 .9930491 .6715000 .010210-1.02147-1.17964-0.799720 .108769-0.55238-0.142650 .3001950 .9567821 .5011191 .581274$ $6.4222124 .3650306 .0210534 .7213802 .4913370 .142718-1.49316-2.44701-2.48591-1.94397-0.89322-1.52660-1.01069-0.491720 .2499180 .8664300 .985476$ $2.8932935 .7192834 .2451421 .661066-0.90299-2.60363-3.52574-3.45793-2.75622-1.55416-2.18756-1.57418-0.98413-0.161430 .5200650 .666204$ 8.678286 5. $1073160.991515-2.21218-4.17443-5.05176-4.17413-3.17849-2.29533-2.95175-2.18281-1.47959-0.528020 .2505700 .428045$
$-2.30726-5.17391-7.88348-8.96090-9.08256-8.10155-6.39011-1.37334-4.91285-3.81328-2.88768-1.70892-0.75024-0.48404$ $-8.12925-9.88795-10.5141-10.2909-8.95172-6.87987-1.59396-5.16116-3.93562-2.92899-1.66198-0.64410-0.36998$ $-10.6155-11.2147-10.6867-8.98790-6.51836-3.96490-4.69001-3.39014-2.33098-1.003240 .0396780 .280354$ $-11.8461-10.6934-8.30284-5.34144-2.31079-3.44528-2.12416-1.038280 .3316021 .3641431 .513107$ $-9.52498-6.38770-3.084590 .330155-1.56975-0.367030 .672318 \quad 2.0227472 .9865932 .990406$ $-2.818370 .2687384 .0275320 .6131891 .6207632 .5579713 .8551271 .1101694 .522895$ 2.888918 1.432350 1.832724 2.6756563 .6103784 .9464455 .1568695 .415989
13.447201 .1422402 .5819223 .8135475 .1225596 .3062195 .829162 $-9.12760-1.671321 .1291163 .7282515105919$ 4.762429 4.742825 6.159456 7.9658368 .5807051 .486122 1.898446 $9.92171510 .090 t 08.284567$
$11.72708 \quad 11.019168 .380791$
10.315716 .778011 3.029945

CUMULATIVE RETURNS: S\&P 500, FAMILY SELECTIONS

In Conciusion by merging ownership and control in the publicly held corporation and valuing the concern as an owner-entrepeneur, it is possible to achieve significantly superior long term returns to those companies whose institutional/investors and corporate managements have a tug-of-war over the near-term return streams of the economic engine that is the corporation.

APPENDIX

```
Test of Past Correilations: S&P 500;
                                    Family Universe:
                                    Family Selections
```

S\&P 500 Family Universe

$$
\begin{aligned}
r & =0.9759 \\
r .990 & =0.735 \\
0.9759 & >0.7350
\end{aligned}
$$

Conclusion: 99\% confidence of significant correllations between the S\&P 500 and the Family Universe.

$$
0.9759^{2}=0.9524
$$

Conclusion: 95\% of the aggregate return of the Family Universe is explained by the S\&P 500.

S\&P 500 Family Selections

$$
\begin{gathered}
r=0.9456 \\
r .9 .0=0.735 \\
0.9456>0.735
\end{gathered}
$$

Conclusion: 99\% confidence of significant correllation between the S\&P 500 and The Family Selections.

$$
0.9456^{2}=0.8942
$$

Conclusion: 89\% of the aggregate return of the Family Selections is explained by the S\&P 500.

$$
\text { Test of Past Varıances: } \begin{aligned}
& S \& P \text { 500: } \\
& \text { Family Universe; } \\
& \text { Famıly Selections }
\end{aligned}
$$

```
S&P 500 Family Universe
```

Intervals $10 \quad 10$
Variances
44.6786

$$
\begin{gathered}
x=73.88795 \div 44.6786=1.6539 \\
y=F .900(9.9)=2.44 \\
2.44>1.6539
\end{gathered}
$$

Conclusion: No significant difference between risk in S\&P 500 and Family Universe.

$$
\begin{gathered}
1.60 \begin{array}{c}
(1.6539)>0.2481(1.6539) \\
6.6652
\end{array} \quad \gg 1.4103 \\
2.6462>x>1.0337
\end{gathered}
$$

75\% of the time the variances of the Family Universe divided by the variance of the S\&P 500 will be within the region X.

$$
\begin{array}{ccc}
\text { Ls } & \text { S\&P } 500 & \text { Family Selections } \\
10 & 10 \\
\text { es } & 44.67486 & 45.5174 \\
x= & 45.5174 \div 44.67486=1.0189 \\
y= & \text { F.900 } & (9.9)=2.44 \\
& 2.44 & >1.0189
\end{array}
$$

Conclusion: No significant difference between risk in S\&P 500 and Family Selections.

$$
\begin{gathered}
1.600(1.0189)=x>0.6250(1.0189) \\
1.6302>x>0.6368
\end{gathered}
$$

75\% of tire time the variance of the Family Selections divided by the variance of the S\&P 500 will be within the region X.

Test of Past Expected Returns: S\&P 500; Eamily Universe: Family selections

Intervals Average Returns Variance
S\&P 500 Family Universe

10

10
13.30665 6.683925^{2}
18.36081 8.59810^{2}

$$
\begin{aligned}
& z .900=1.282 \\
& x=1.282 \sqrt{\frac{6.6839252+8.59810^{2}}{10}} \\
&=4.4150
\end{aligned}
$$

$$
z=18.36081-13.330665
$$

$$
=5.0542
$$

$$
5.0542>4.4150
$$

Conclusian: 90% confidence the Family Universe has significantly outperformed the S\&P 500 on a risk-adjusted-return basis.
90\% confidence interval for the true difference between the returns of the Family Universe and the S\&P 500:

$$
9.4692 \gg 0.6392
$$

S\&P 500 Family Selections
Time Invervals $10 \quad 10$
Average Return
$13.30665 \quad 31.55919$
Variance
$6.683925^{2} 6.746659^{2}$
2. $990=2.325$

$$
\begin{aligned}
x=2.325 & \sqrt{\frac{6.683925^{2}+6.7466592}{10}} \\
& =6.9824
\end{aligned}
$$

$$
31.55919-13.30665=18.2525
$$

$$
18.2525>6.9824
$$

Conclusior: 99\% confidence that the Family Selections, in the aggregate have significantly outperformed the S\&P 500 on a risk-adjusted return basis.
99\% confidence interval for the true difference between the aggregate return of the Family Selections and the S\&P 500.

CUMULATIVE NORMAL DISTRIBUTION - VALUES OF P

Values of P corresponding to x_{p} for the normal curve.
z is the s tandard normal variable. The value of P for $-x_{p}$ equals one minus the vaiue of P for $+z_{p r}$ e.g., the P for -1.62 equals $1-.9474=.0526$.

${ }^{2} p$. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
. 0	. 5000	1. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
. 1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	5714	5753
.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	6141
.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	6879
. 5	. 6915	. 6950	6985	. 7019	. 7054	7088	7123	. 7157	. 7190	7224
.6	. 7257	. 7291	7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	7549
. 7	. 7580	. 7611	7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	7852
. 8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	8133
. 9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	9936
2.5	. 7938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	9964
2.7	. 3965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 3974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 6987	. 9987	. 9987	. 9988	. 9988	. 9989	9989	9989	. 9990	. 9990
3.1	. 6990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

PROBABILITY FUNCTIONS

PERCENTAGE POINTS OF THE FDISTRIBUTION - VALEES
OF F IN TERMS OF Q, ν, μ
$q\left(F \nu_{1 .} \nu_{2},-0\right) .5$

$v_{2} \boldsymbol{L}_{2}$	1	2	. 3	4	5)	6	3	12	15	20	30	60	∞
1	1.00	:.50	$\vdots .71$	1.82	1.89	2.94	2.20	2.07	2.09	2.12	2.15	2.17	2.20
2	3.667	1. 30	1.13	:. 21	1.25	1.28	. .32	1.36	1.38	1.39	1.41	1.43	1.44
3	3.585	1.881	1.30	1.66	1.10	: .13	. 116	1.20	1.21	. 2.23	1.24	i. 25	1.27
4	5.549	0.828	0.941	1.50	2.04	1.06	: 39	1.13	1.14	1.15	1.16	1.18	1.19
5	0.528	0.799	0.907	3.765	1.00	1.02	1.05	1.09	1.20	1.11	1.12	1.14	1.15
6	0.515	0.780	0.886	0.942	0.977	1.00	1.93	1.06	1.07	1.08	1.10	1.11	2.12
7	0.506	0.767	0.871	2.926	0.960	0.983	1.01	1.04	1.05	1.07	1.08	1.09	1.10
8	0.499	0.757	3.860	3.915	0.948	0.971	1.30	1.23	1.04	1. 35	1.07	1.08	-. 29
9	0.494	0.749	0.852	0.906	0.739	0.962	3.790	1.02	1.03	1.04	1.05	1.07	1.08
10	J. 490	0.743	0.845	0.899	0.932	0.954	0.983	1.01	1.02	1.03	1.05	1.06	1.07
11	0.486	0.739	0.840	0.893	0.926	0.948	0.977	1.01	1.02	1.03	1.04	1.05	1.06
12	0.484	0.735	0.835	0.888	0.921	0.943	0.972	1.00	1.01	1.02	1.03	1.05	1.06
13	0.481	0.731	0.832	0.885	0.917	0.939	0.967	0.996	1.01	1.02	1.03	1.04	1.05
14	. .479	0.729	0.828	0.881	0.914	0.936	0.964	0.992	1.00	1.01	1.03	1.04	1.05
15	0.478	0.726	0.826	0.878	0.911	0.933	0.960	0.989	1.00	1.01	1.02	1.03	1.05
16	0.476	0.724	0.823	0.876	0.908	0.930	0.958	0.986	0.997	1.01	1.02	1.03	1.04
17	0.475	0.722	0.821	0.874	0.906	0.928	0.955	0.983	0.995	1.01	1.02	1.03	1.04
18	0.474	0.721	0.819	0.872	0.904	0.926	0.953	0.981	0.992	1.00	1.02	1.03	1.04
19	J. 473	0.719	0.818	0.870	0.902	0.924	0.951	0.979	0.990	1.00	1.01	1.02	1.04
20	0.472	0.718	0.816	0.868	0.900	0.922	0.950	0.977	0.989	1.00	1.01	1.02	1.03
21	J. 471	0.716	0.815	0.867	0.899	0.921	0.948	0.976	0.987	0.998	1.01	1.02	1.03
22	0.470	0.715	0.814	0.866	0.898	0.919	0.947	0.974	0.986	0.997	1.01	1.02	1.03
23	0.470	0.714	0.813	0.864	0.896	0.918	0.945	0.973	0.984	0.996	1.01	1.02	1.03
24	- .469	0.714	0.812	0.863	0.895	0.917	0.944	0.972	0.983	0.994	1.01	1.02	1.03
25	0.468	0.713	3.311	0.862	0.894	0.916	0.943	0.971	0.982	0.993	1.00	1.02	1.03
26	$\therefore .468$	0.712	0.810	0.861	0.893	0.915	0.942	0.970	0.981	0.992	1.00	1.01	1.03
27	0.467	0.711	0.809	0.861	0.892	0.914	0.941	0.969	0.980	0.991	1.00	1.01	1.03
28	0.467	0.711	0.808	0.860	0.892	0.913	0.940	0.968	0.979	0.990	1.00	1.01	1.02
29	0.466	0.710	0.808	0.859	0.891	0.912	0.940	0.967	0.978	0.990	1.00	1.01	1.02
30	0.466	0.709	0.807	0.858	0.890	0.912	0.939	0.966	0.978	0.989	1.00	2.02	1.02
40	0.463	0.705	0.802	0.854	0.885	0.907	0.934	0.961	0.972	0.983	0.994	1.01	1.02
60	0.461	0.701	0.798	0.849	0.880	0.901	0.928	0.956	0.967	0.978	0.989	1.00	1.01
120	0.458	0.697	0.793	0.844	0.875	0.896	0.923	0.950	0.961	0.972	0.983	0.994	1.01
-	0.455	0.693	0.789	0.839	0.870	0.891	0.918	0.945	0.956	0.967	0.978	0.989	1.00

$\nu_{2} \backslash V_{1}$	1	2	3	4	5	6	8	12	15	20	30	60	\%
1	5.83	7.50	8.20	8.58	8.82	8.98	9.19	9.41	9.49	9.58	9.67	9.76	9.85
2	?. 57	3.00	3.15	3.23	3.28	3.31	3.35	3.39	3.41	3.43	3.44	3.46	3.48
3	$\therefore 02$	2.28	2.36	2.39	2.41	2.42	2.44	2.45	2.46	2.46	2.47	2.47	2.47
4	... 81	2.00	2.05	2.06	2.17	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08
5	$\ldots .69$	1.85	1.88	1.89	1.89	1.89	1.89	1.89	1.89	1.88	1.88	1.87	1.87
6	1.62	1.76	1.78	1.79	1.79	1.78	1.78	1.77	1.76	1.76	1.75	1.74	1.74
7	1.57	1.70	1.72	1.72	1.71	1.71	1.70	1.68	1.68	1.67	1.66	1.65	1.65
8	1.54	1.66	1.67	1.66	1.66	1.65	1.64	1.62	1.62	1.61	1.60	1.59	1.58
9	1.51	1.62	1.63	1.63	1.62	1.61	1.60	1.58	1.57	1.56	1.55	1.54	1.53
10	1.49	1.60	1.50	1.59	1.59	1.58	1.56	1.54	1.53	1.52	1.51	1.50	1.48
11	1.47	1.58	1.58	1.57	1.56	1.55	1.53	1.51	1.50	1.49	1.48	1.47	1.45
12	1.46	1.56	1. 56	1.55	1.54	1.53	1.51	1.49	1.48	1.47	1.45	1.44	1.42
3	1.45	1.55	1.55	1.53	1.52	1.51	1.49	1.47	1.46	1.45	1.43	1.42	1.40
14	1.44	1.53	1.53	1.52	1.51	1.50	1.48	1.45	1.44	1.43	1.41	1.40	1.38
5	1.43	1.52	1.52	1.51	1.49	2.48	1.46	1.44	1.43	1.41	1.40	1.38	1.36
6	1.42	1.51	1.51	1.50	1.48	1.47	1.45	1.43	1.41	1.40	1.38	1.36	1.34
17	1.42	1.51	1.50	1.49	1.47	1.46	1.44	1.41	1.40	1.39	1.37	1.35	1.33
18	1.81	1.50	1.49	1.48	1.46	1.45	1.43	1.40	1.39	1.38	1.36	1.34	1.32
19	1.41	1.49	1.49	1.47	1.46	1.44	1.42	1.40	1.38	1.37	1.35	1.33	1.30 +1.29
20	1.70	1.49	1.48	1.47	1.45	1.44	1.42	1.39	1.37	1.36	1.34	1.32	1.29
11	1.10	1.48	1.48	1.46	1.44	1.43	2.41	1.38	1.37	1.35	1.33	1.31	1.28
2	1.40	1.48	1.47	1.45	1.44	1.42	1.40	1.37	1.36	1.34	1.32	1.30	1.28
23	1.39	1.47	1.47	1.45	1.43	1.42	1. 40	1.37	1.35	1.34	1.32	1.30	1.27
4	1.:39	1.47	1.46	1.44	1.43	1.41	1.39	1.36	1.35	1.33	1.31	1.29	1.26
25	$1 .: 9$	1.47	1.46	1.44	1.42	1.42	1.39	1.36	1.34	1.33	1.31	1.28	1.25
6	1.38	1.46	1.45	1.44	1.42	1.41	1.38	1.35	1.34	1.32	1.30	1.28	1.25
7	1.38	1.46	1.45	1.43	1.42	1.40	1. 38	1.35	1.33	1.32	1.30	1.27	1.24
8	1.38	1.46	1.45	1. 43	..41	1.40	1.38	1.34	1.33	1.31	1.29	1.27	1.24
9	1.38	1.45	1.45	1.43	1.41	1.70	1.37	1.34	1.32	1.31	1.29	1.26	1.23
0	1.38	1.45	1.44	1.42	.. 41	1.39	1.37	1.34	1.32	1.30	1.28	1.26	1.23
0	1.36	1.44	1.42	2.40	1.39	1.37	1.35	1.31	1.30	1.28	1.25	1.22	1.29
60	1.35	1.42	1.41	1.38	1.37	1.35	1.32	1.29	1.27	1.25	1.22	1.19	1.25
0	2.31	1.40	1.39	1.37	1.35	1.33	1.30	1.26	1.24	1.22	1.19	1.16	1.10
	1.32	1.39	2.37	. .35	2.33	1.31	1.28	1.24	2.22	1.19	1.16	1.12	1.00

PERCENTAGE POINTS OF TIIE F.DISTRIBLTION - VALLES
of F IV TERIS OF (o, ν, ν

PERCENTAGE POINTS OF TIIE F.DISTRIBUTION -VALLES
OF F IV TERMS OF Q, ν, ν :

$\nu_{2} V_{1}$	1	2	3	4	5	6	8	12	15	20	30	60	109
-1.	647.8	:79.5	364.2	999.6	921.8	937.1	756.7	976.7	984.9	993.1	1001	1010	1018
2	38.51	19.00	39.17	39.25	39.30	39.33	39.37	39.41	39.43	39.45	39.46	39.48	39.50
3	17.44	16.04	: 5.44	15.10	14.88	14.73	14.54	14.34	24.25	14.17	14.08	13.99	13.90
4	:2.22	:0.65	7.98	7.60	7.36	9.20	0.98	8.75	9.66	3.56	8.46	8.36	8.26
5	10.01	3.43	7.76	7.39	7.15	6.98	6.76	6.52	6.43	6.3	6.2	6.1	6.
5	8.81	7.26	6.60	6.23	5.99	5.82	5.60	5.37	5.27	5.17	5.07	4.96	4.85
7	3.07	6.54	5.89	5.52	5.29	5.12	4.90	4.67	4.57	4.47	4.36	4.25	4.14
3	7.57	6.06	5.42	5.05	4.82	4.65	4.43	4.20	4.10	4.00	3.89	3.78	3.67
9	7.21	5.71	5.08	4.72	4.48	4.32	4.10	3.87	3.77	3.67	3.56	3.45	3.33
10	0.94	5.46	4.83	4.47	4.24	4.07	3.85	3.62	3.52	3.42	3.31	3.20	3.08
11	4.72	5.26	4.63	4.28	4.04	3.88	3.66	3.43	3.33	3.23	3.12	3.00	2.88
12	6.55	5.10	4.47	4.12	3.89	3.73	3.51	3.28	3.18	3.07	2.96	2.85	2.72
13	6.41	4.97	4.35	4.00	3.77	3.60	3.39	3.15	3.05	2.95	2.84	2.72	2.60
14	6.30	4.86	4.24	3.89	3.66	3.50	3.29	3.05	2.95	2.84	2.73	2.61	2.49
15	6.20	4.77	4.15	3.80	3.58	3.41	3.20	2.96	2.86	2.76	2.64	2.52	2.40
16	6.12	4.69	4.08	3.73	3.50	3.34	3.12	2.89	2.79	2.68	2.57	2.45	2.32
17	6.04	4.62	4.01	3.66	3.44	3.28	3.06	2.82	2.72	2.62	2.50	2.38	2.25
18	5.98	4.56	3.95	3.61	3.38	3.22	3.01	2.77	2.67	2.56	2.44	2.32	2.19
19	5.92	4.51	3.90	3.56	3.33	3.17	2.96	2.72	2.62	2.51	2.39 2.35	2.27 2.22	2.13
20	5.87	4.46	3.86	3.51	3.29	3.13	2.91	2.68	2.57	2.46	2.35	2.22	2.09
21	5.83	4.42	3.82	3.48	3.25	3.09	2.87	2.64	2.53	2.42	2.31	2.18	2.04
22	5.79	4.38	3.78	3.44	3.22	3.05	2.84	2.60	2.50	2.39	2.27	2.14	2.00
23	5.75	4.35	3.75	3.41	3.18	3.02	2.81	2.57	2.47	2.36	2.21	2.11	1.97
24	5.72	4.32	3.72	3.38	3.15	2.99	2.78	2.54	2.44	2.33	2.21	2.05	1.91
25	5.69	4.29	3.69	3.35	3.13	2.97	5	1	2.41	2.30	2.18	2.05	1.91
25	5.66	4.27	3.67	3.33	3.10	2.94	2.73	2.49	2.39	2.28	2.16	2.03	1.88
27	5.63	4.24	3.65	3.31	3.08	2.92	2.71	2.47	2.36	2.25	2.13	2.00	1.85
28	5.61	4.22	3.63	3.29	3.06	2.90	2.69	2.45	2.34	2.23	2.12	1.98	1.83
29	5.59	4.20	3.61	3.27	3.04	2.88	2.67	2.43	2.32	2.21	2.09	1.96	1.89
30	5.57	4.18	3.59	3.25	3.03	2.87	2.65	2.42	2.31	2.20	2.07	1.94	1.79
40	5.42	4.05	3.46	3.13	2.90	2.74	2.53	2.29	2.18	2.07	1.94	1.80	1.64
60	5.29	3.93	3.34	3.01	2.79	2.63	2.41	2.17	2.06	1.94	1.82	1.67	1.48
120	5.15	3.80	3.23	2.89	2.67	2.52	2.30	2.05	1.94	1.71	1.57	1.39	1.00
-	5.02	3.69	3.12	2.79	2.57	2.41	2.19	1.96	1.8				
$Q\left(F^{\prime} \nu_{1}, \nu_{2}\right)-0.01$													
$V_{2} \nu_{1}$,	2	3	4	5	6	8	12	15	20	30	60	-
1	4052	4999.5	5403	5625	5764	5859	5982	6106	6157	6209	6261	6313	6366
2	78.50	99.00	99.17	79.25	99.30	99.33	99.37	99.42	99.43	99.45	99.47	99.48	99.50
3	34.12	30.82	29.46	28.71	28.24	27.91	27.49	27.05	26.87	26.69	26.50	26.32	26.13
4	21.20	18.00	16.69	15.98	15.52	15.21	14.80	14.37	14.20	14.02	+9.84	19.65 9.20	9.46
5	16.26	13.27	12.06	11.39	10.97	20.67	10.29	9.89	9.72	9.5	, 38		9.02
		10.92	9.78	9.15	8.75	8.47	8.10	7.72	7.56	7.40	7.23	7.06	6.88
7	12.25	9.55	8.45	7.85	7.46	7.19	6.84	6.47	6.31	6.16	5.99	5.82	5.65
8	11.26	8.65	7.59	7.01	6.63	6.37	5.03	5.67	5.52	5.36	5.20	5.03	4.86
9	10.56	3.02	6.99	6.42	6.06	5.80	5.47	5.1	4.96	4.81	4.65	4.48	4.31
10	10.04	7.56	6.55	5.99	5.64	5.39	5.06	4.71	4.56	4.41	4.25	4.0	3.9
11	9.65	7.21	6.22	5.67	5.32	5.07	4.74	4.40	4.25	4.10	3.94	3.78	3.60
12	7.33	6.73	5.95	5.41	5.06	4.82	4.50	4.16	4.01	3.86	3.70	3.54	3.36
13	9.07	6.70	5.74	5.21	4.86	4.62	4.30	3.96	3.82	3.66	3.51	3.34	3.17
14	8.86	5.51	5.56	5.04	4.69	4.46	4.14	3.80	3.66	3.31	3.35	3.18	3.00
15	8.68	5.36	5.42	4.89	4.56	4.32	4.00	3.67	3.52	3.37	3.21	3.05	2.07
16	8.53	5.23	5.29	4.77	4.44	4.20	3.89	3.55	3.41	3.26	3.10	2.93	2.75
17	8.40	5.11	5.18	4.67	4.34	4.10	3.79	3.46	3.31	3.16	3.00	2.83	2.65
18	8.29	5.01	5.09	4.58	4.25	4.01	3.71	3.37	3.23	3.08	2.92	2.75	2.37
19	8.18	5.93	5.01	4.50	4.17	3.94	3.63	3.30	3.15	3.00	2.84	2.67	2.49
20	8.10	'5.85	4.94	4.43	4.10	3.87	3.56	3.23	3.09	2.94	2.88	2.61	2.42
21	8.02	¢. 78	4.87	4.37	4.04	3.81	3.51	3.17	3.03	2.88	2.72	2.55	2.36
22	7.95	:. 72	4.82	4.31	3.99	3.76	3.45	3.12	2.98	2.83	2.67	2.50	2.31
23	7.88	!. 66	4.76	4.26	3.94	3.71	3.41	3.07	2.93	2.78	2.62	2.45	2.26
24	7.82	! 5.61	4.72	4.22	3.90	3.67	3.36	3.03	2.89	2.74	2.58	2.46	2.21
25	7.77	5.57	4.68	4.18	3.85	3.63	3.32	2.99	2.85	2.70	2.54	2.36	2.17
			4.64	4.14	3.82	3.59	3.29	2.96	2.81	2.66	2.50	2.33	2.13
26	7.72	5.59	4.60	4.11	3.78	3.56	3.26	2.93	2.78	2.63	2.47	2.29	2.10
28	7.68	4.45	4.57	4.07	3.75	3.53	3.23	2.90	2.75	2.60	2.44	2.26	2.06
29	7.60	$\because .42$	4.54	4.04	3.73	3.50	3.20	2.87	2.73	2.57	2.41	2.23	2.03
30	7.56	5.39	4.51	4.02	3.70	3.47	3.17	2.84	2.70	2.55	2.39	2.21	2.01
							2.99	2.66	2.52	2.37	2.20	2.02	1.80
40	7.31	9.18	4.31	3.83	3.34	3.12	2.82	2.50	2.35	2.20	2.03	1.84	1.60
60	7.08	4.98	4.13	3.48	3.17	2.96	2.66	2.34	2.19	2.03	1.86	1.66	1.38
120	6.85	4.79	3.95 3.78	3.48	3.02	2.80	2.51	2.18	2.04	1.88	1.70	1.47	1.00
∞	6.63	4.61	3.78	3.32									

PERCENTACE POINTS of TIIE FADISTRIBLTION - alles
OF F IN TERMS of $\boldsymbol{Q}, \nu . \nu$:

$\nu_{2} \nu_{1}$	11	3	3	4	5	6	S	12	15	20	30	60	∞
1	16211	20000	21615	22500	23056	23437	23925	24426	24630	24836	25044	25253	25465
2	:78.5	179.0	:99.2	-99.2	199.3	179.3	:79.4	: 99.4	199.4	:99.4	199.5	199.5	199.5
3	55.55	49.80	47.47	46.19	45.35	44.84	14.13	¢3.39	± 3.08	42.78	42.47	42.15	41.83
1	31.33	26.211	24.26	23.15	22.46	21.97	31.35	20.70	20.44	20.17	17.89	19.61	19.32
5	22.78	18.3:	26.53	15.56	14.94	14.51	:3.96	13.38	:3.15	12.90	:2.66	12.40	12.14
5	: 8.63	14.54	12.92	12.03	11.46	11.07	10.57	10.03	9.81	9.59	9.36	9.12	8.88
?	: 6.24	12.46	10.88	10.05	9.52	9.16	8.68	8.18	7.97	7.75	7.53	7.31	7.08
5	:4.67	11.04	9.60	9.81	8.30	7.95	7.50	7.01	6.81	6.61	6.40	6.18	5.95
7	13.61	10.11	3.72	7.96	7.47	7.13	5.69	6.23	6.03	5.83	5.62	5.41	5.19
10	12.83	7.43	8.08	7.34	6.87	6.54	6.12	5.66	5.47	5.27	5.07	4.86	4.64
12	12.23	8.91	7.60	6.88	6.42	6.10	5.68	5.24	5.05	4.86	4.65	4.44	4.23
12	11.75	8.51	7.23	6.52	6.07	$5.7 t$	5.35	4.91	4.72	4.53	4.33	4.12	3.90
13	11.37	8.19	6.93	6.23	5.79	5.48	5.08	4.64	4.46	4.27	4.07	3.87	3.65
14	11.06	7.92	6.68	6.00	5.56	5.26	4.86	4.43	4.25	4.06	3.86	3.66	3.44
: 5	: 0.80	7.70	6.48	5.80	5.37	5.07	4.67	4.25	4.07	3.88	3.69	3.48	3.26
16	10.58	7.51	6.30	5.64	5.21	4.91	4.52	4.10	3.92	3.73	3.54	3.33	3.11
17	10.38	7.35	6.16	5.51	5.07	4.78	4.39	3.97	3.79	3.61	3.41	3.21	2.98
18	10.22	7.21	6.03	5.37	4.96	4.66	4.28	3.86	3.68	3.50	3.30	3.10	2.87
19	10.07	7.09	5.92	5.27	4.85	4.56	4.18	3.76	3.59	3.40	3.21	3.00	2.78
20	9.94	6.99	5.82	5.17	4.76	4.47	4.09	3.68	3.50	3.32	3.12	2.92	2.69
21	9.83	6.89	5.73	5.09	4.68	4.39	4.01	3.60	3.43	3.24	3.05	2.84	2.61
22	9.73	6.81	5.65	5.02	4.61	4.32	3.94	3.54	3.36	3.18	2.98	2.77	2.55
23	9.63	6.73	5.58	4.95	4.54	4.26	3.88	3.47	3.30	3.12	2.92	2.71	2.48
24	9.55	6.66	5.52	4.89	4.49	4.26	3.83	3.42	3.25	3.06	2.87	2.66	2.43
25	9.48	6.60	5.46	4.84	4.43	4.15	3.78	3.37	3.20	3.01	2.82	2.61	2.38
26	9.41	6.54	5.41	4.79	4.38	4.10	3.73	3.33	3.15	2.97	2.77	2.56	2.33
27	9.34	6.49	5.36	4.74	4.34	4.06	3.69	3.28	3.11	2.93	2.73	2.52	2.29
28	9.28	6.44	5.32	4.70	4.30	4.02	3.65	3.25	3.07	2.89	2.69	2.48	2.25
29	9.23	6.40	5.28	4.66	4.26	3.98	3.61	3.21	3.04	2.86	2.66	2.45	2.21
30	9.18	6.35	5.24	4.62	4.23	3.95	3.58	3.18	9.01	2.82	2.63	2.42	2.18
40	8.83	6.07	4.98	4.37	3.99	3.71	3.35	2.95	2.78	2.60	2.40	3.18	1.93
60	8.49	5.79	4.73	4.14	3.76	3.49	3.13	2.74	2.57	2.39	2.19	1.96	1.69
20	8.18	5.54	4.50	3.92	3.55	3.28	2.93	2.54	2.37	2.19	1.98	1.75	1.43
0	7.88	5.30	4.28	3.72	3.35	3.09	2.74	2.36	2.19	2.00	1.79	1.53	1.00
$Q\left(F \mid \nu_{1}, \nu_{2}\right)=0.001$													
$\nu_{2} v_{1}$	1	2	3	4	5	6	8	12	15	20	30	60	-
1	(5)4.053	(5) 5.000	(5)5.404	(5) 5.625	(5)5.764	(5) 5.859	(5) 5.981	(5) 6.107	(5)6.158	(5) 6.209	(5) 6.261	(5) 6.313	(5) 6.366
2	998.5	999.0	999.2	999.2	999.3	999.3	999.4	999.4	999.4	999.4	999.5	999.5	999.5
3	167.0	148.5	141.1	137.1	134.6	132.8	130.6	128.3	127.4	126.4	125.4	124.5	123.5
4	74.14	61.25	56.18	53.44	51.71	50.53	49.00	47.41	46.76	46.10	45.43	44.75	44.05
5	47.18	37.12	33.20	31.09	29.75	28.84	27.64	26.42	25.91	25.39	24.87	24.33	23.79
6	35.51	27.00	23.70	21.92	20.81	20.03	19.03	17.99	17.56	17.12	16.67	16.21	15.75
7	29.25	21.69	18.77	17.19	16.21	15.52	14.63	13.71	13.32	12.93	12.53	12.12	11.70
8	25.42	18.49	15.83	14.39	13.49	12.86	12.04	11.19	10.84	10.48	10.11	9.73	9.33
9	22.86	16.39	13.90	12.56	11.71	11.13	10.37	9.57	9.24	8.90	8.55	8.19	7.81
10	21.24	14.91	12.55	11.28	10.48	9.92	7.20	8.45	8.13	7.80	7.47	7.12	6.76
11	19.69	\$3.81	11.56	10.35	9.58	9.95	3.35	7.63	7.32	7.01	0.68	6.35	6.00
2	18.64	12.97	10.80	7.63	8.89	8.38	7.71	7.00	6.71	6.40	6.07	5.76	5.42
13	17.81	12.31	10.21	7.07	8.35	7.86	7.21	6.52	6.23	5.93	5.63	5.30	4.97
14	17.14	11.78	9.73	8.62	7.92	7.43	6.80	6.13	5.85	5.56	5.25	4.94	4.60
15	16.59	11.34	9.34	8.25	7.57	7.09	6.47	5.81	5.54	5.25	4.95	4.64	4.31
16	16.12	10.97	9.00	7.94	7.27	6.81	6.19	5.55	5.27	4.99	4.70	4.39	4.06
17	15.72	10.66	8.73	7.68	7.02	6.56	5.96	5.32	5.05	4.78	4.48	4.18	3.85
18	15.38	10.39	8.49	7.46	6.81	6.35	5.76	5.13	4.87	4.59	4.30	4.00	3.67
19	15.08	10.16	8.28	7.26	6.62	6.18	5.59	4.97	4.70	4.43	4.14	3.84	3.51
20	14.82	9.95	8.10	7.10	6.46	6.02	5.44	4.82	4.56	4.29	4.00	3.70	3.38
21	14.59	9.77	7.94	6.95	6.32	5.88	5.31	4.70	4.44	4.17	3.88	3.58	3.26
2	14.38	9.61	7.80	6.81	6.19	5.76	5.19	4.58	4.33	4.06	3.78	3.48	3.15
23	14.19	9.47	7.67	6.69	6.08	5.65	5.09	4.48	4.23	3.96	3.68	3.38	3.05
24	14.03	9.34	7.55	6.59	5.98	5.55	4.99	4.39	4.14	3.87	3.59	3.29	2.97
25	13.88	9.22	7.45	6.49	5.88	5.46	4.91	4.31	4.06	3.79	3.52	3.22	2.89
26	13.74	9.12	7.36	6.41	5.80	5.38	4.83	4.24	3.99	3.72	3.44	3.15	2.82
7	13.61	9.02	7.27	6.33	5.73	5.31	4.76	4.17	3.92	3.66	3.38	3.08	2.75
8	13.50	8.93	7.19	6.25	5.66	5.24	4.69	4.11	3.86	3.60	3.32	3.02	2.69
9	13.39	8.85	7.12	6.19	5.59	5.18	4.64	4.05	3.80	3.54	3.27	2.97	2.64
30	13.29	8.77	7.05	6.12	5.53	5.12	4.58	4.00	3.75	3.49	3.22	2.92	2.59
0	12.61	8.25	6.60	5.70	5.13	4.73	4.21	3.64	3.40	3.15	2.87	2.57	2.23
0	11.97	7.76	6.17	5.31	4.76	4.37	3.87	3.31	3.08	2.83	2.55	2.25	1.89
0	11.38	7.32	5.79	4.95	4.42	4.04	3.55	3.02	2.78	2.53	2.26	1.95	1.54
-	10.83	6.91	5.42	4.62	4.10	3.74	3.27	2.74	2.51	2.27	1.99	1.66	1.00

Critical Absolute Values of Correlation Coefficient ${ }^{\text {P* }}$

3% pounts and 1% points (in boldface) for equal-tails test of hypotheais $\rho=0$.

\dagger	Tetal namber of varnables				f	Total mmomber of varinbies			
	2	3	4	5		2	3	4	5
1	1.097	$\begin{array}{r} .099 \\ 1.006 \end{array}$	$\begin{array}{r} .099 \\ 1.000 \end{array}$	$.989$	84	$\begin{aligned} & .388 \\ & .306 \end{aligned}$	$\begin{gathered} 470 \\ \hline 85 \end{gathered}$	$\begin{aligned} & .523 \\ & .609 \end{aligned}$	$\begin{aligned} & .582 \\ & .662 \end{aligned}$
2	.950	. 975	.983	. 988	25	. 381	. 482	. 514	. 553
3	. 878	$\begin{array}{r} .930 \\ .976 \end{array}$	$\begin{aligned} & .950 \\ & \hline 885 \end{aligned}$.981	20	. 374			
4	. 811	. 881	. 912	. 930		. 678	.454	$\begin{array}{r}308 \\ \hline 000\end{array}$. 545
	817	30	$\pm{ }^{2}$	270	27	. 367	. 46	. 488	536
5	. 784	. 8176	. 837	.898	28	${ }^{361}$. 438	. 480	. 588
								. 482	
0	. 707	. 785	. 839	. 867	29	. 355	$.830$. 521
	$4{ }^{3} 4$. ${ }^{\text {Pre }}$	211	.887		-456	${ }_{6} 82$	485	
7	. 688	. 758	8007	. 838	30	$\begin{aligned} & 349 \\ & .348 \end{aligned}$	$\$ 186$.76	. 514
8		$.786$. 777	.811					
	$\text { . } 692$				35	325	397	. 445	. 482
\bigcirc	. 002	. 897			40	. 304	. 181	. 285	48
10	$\begin{aligned} & .785 \\ & .576 \\ & .708 \end{aligned}$	$\begin{array}{r} .000 \\ .771 \\ .778 \end{array}$	$\begin{aligned} & .380 \\ & .786 \\ & \hline 14 \end{aligned}$	$\begin{aligned} & 881 \\ & .763 \\ & 800 \end{aligned}$			$\begin{aligned} & 104 \\ & 353 \end{aligned}$. 419	. 435
					45	-288		. 397	432
11	. 553	$.648$	$\begin{aligned} & 703 \\ & .703 \end{aligned}$. 71	50	$\begin{array}{r} 572 \\ 273 \\ 274 \end{array}$.150.338.110	. 379	. 418
				281					
12	$\begin{aligned} & .532 \\ & \hline 81 \end{aligned}$	$.627$	$\text { . } 883$	$.722$	60	250	. 308	. 348	380
13	. 514	$\begin{aligned} & .008 \\ & .122 \end{aligned}$	$\text { . } 68$. 783	70	$\begin{aligned} & 232 \\ & 202 \end{aligned}$	$\begin{aligned} & 387 \\ & 886 \end{aligned}$. 314	
									. 354
14	$\begin{aligned} & 497 \\ & .625 \end{aligned}$	$\begin{gathered} .500 \\ .004 \end{gathered}$	$\begin{aligned} & .846 \\ & .737 \end{aligned}$	$.086$	80	. 2178	. 289	. 304	. 332
					00		130	382	
15	+882	$.574$	$\begin{aligned} & \mathbf{8 3 0} 0 \\ & .751 \end{aligned}$	$.870$.905 .88 185	254	288	. 315
18	A888	$\begin{gathered} .559 \\ .452 \end{gathered}$	$\begin{aligned} & .815 \\ & .706 \end{aligned}$	$.055$	100	$.105$	241	$\begin{array}{r} 274 \\ .327 \end{array}$	$\text { . } 300$
17	.486	$.845$	$.601$. 8181	185	. 174	. 216	246	269
18	484	$\begin{array}{r} .532 \\ \hline 103 \end{array}$	$.587$. 8188	150	. 159	. 2184	. 2785	. 247
19	. 433	$\begin{aligned} & .520 \\ & .020 \end{aligned}$	$\begin{aligned} & .575 \\ & \hline 685 \end{aligned}$. 615	200	. 138	. 172	$\begin{aligned} & 196 \\ & 214 \end{aligned}$. 215
20	$\begin{aligned} & 483 \\ & \hline 87 \end{aligned}$	$\begin{gathered} .509 \\ .008 \end{gathered}$	$\begin{aligned} & 503 \\ & \hline 652 \end{aligned}$	$\text { . } 604 .$	300	$\begin{aligned} & .113 \\ & .148 \end{aligned}$	$.141$	$\begin{array}{r} 100 \\ .102 \end{array}$. 1786
21	. 113	$\text { . } 408$	$\begin{aligned} & .552 \\ & .041 \end{aligned}$	$\begin{aligned} & .592 \\ & \hline 674 \end{aligned}$	400	$\begin{aligned} & .098 \\ & .128 \end{aligned}$	$\begin{aligned} & 122 \\ & .181 \end{aligned}$	$\begin{aligned} & .139 \\ & .167 \end{aligned}$	$\begin{aligned} & .153 \\ & .180 \end{aligned}$
22	. 815	.488	$\text { . } \mathrm{S42}$. 588	500	. 088	. 109	. 124	. 137
23	. 396	. 479	. 332	. 572	1000	. 062	. 077	. 088	. 097
	505	574	. 18	. 582		. 081	. 036	. 106	. 115

